EN

行业资讯|高精度UWB定位与其他室内定位技术介绍

提到定位技术,我们首先想到的是GPS,但是GPS的信号功率、穿透力都非常低,所以在室内无法实现定位。目前我们常见的室内定位技术包含 WiFi、BLE、Zigbee、UWB、RFID等技术。根据应用场景的不同,可以采用不同的技术,满足客户的需求。今天为大家具体介绍一下,高精度UWB定位与其他室内定位技术。

UWB定位技术

横条.jpg

WIFI技术

WiFi为 WLAN的标准化组织,其设备均遵循802.11协议,从1999年发展以及有好几代,从 802.11,802.11B,802.11A/G,802.11N,802.11AC,其传输速率也越来越高,从最早的 2Mbps  到现在的 Gbps,Wi-Fi 逐渐被广大用户所接受。

通过无线接入点(包括无线路由器)组成的无线局域网络(WLAN),可以实现复杂环境中的定位、监测和追踪任务。它以网络节点(无线接入点)的位置信息为基础和前提,采用经验测试和信号传播模型相结合的方式,对已接入的移动设备进行位置定位,最高精确度大约在1米至20米之间。如果定位测算仅基于当前连接的Wi-Fi接入点,而不是参照周边Wi-Fi的信号强度合成图,则Wi-Fi定位就很容易存在误差(例如:定位楼层错误)。

另外,Wi-Fi接入点通常都只能覆盖半径90米左右的区域,很容易受到其他信号的干扰,从而影响其精度,定位器的能耗也较高。

超宽带UWB

UWB超宽带是一种无载波通信技术,与传统通信技术的定位方法有较大差异,它不需要使用传统通信体制中的载波,而是通过发送和接收具有纳秒或纳秒级以下的非正弦波窄脉冲来传输数据,可用于室内精确定位,定位精度可达10cm。
清研讯科国内较早做UWB定位技术的,为各行业提供精准位置服务解决方案,例如:电厂、化工厂、工业4.0、隧道管廊、煤矿矿山、仓储物流、新零售、运动等。

清研讯科超宽带系统与传统的窄带系统相比,具有穿透力强、功耗低、抗多径效果好、安全性高、系统复杂度低、能够提高精确定位精度等优点,通常用于室内移动物体的位置信息跟踪。

蓝牙BLE

iBeacons是基于Bluetooth Low Energy技术,又可简称BLE,是一种短距离低功耗的无线传输技术,在室内安装适当的蓝牙局域网接入点后,将网络配置成基于多用户的基础网络连接模式,并保证蓝牙局域网接入点始终是这个微网络的主设备。这样通过检测信号强度就可以获得用户的位置信息。 蓝牙技术由诺基亚在 2001 年开始研发,2007年与蓝牙技术联盟达成协议,并入标准蓝牙并正式定名为低功耗蓝牙。

蓝牙定位主要应用于小范围定位,例如:单层大厅或仓库。对于持有集成了蓝牙功能移动终端设备,只要设备的蓝牙功能开启,蓝牙室内定位系统就能够对其进行位置判断。不过,对于复杂的空间环境,蓝牙定位系统的稳定性稍差,受噪声信号干扰大。

Zigbee技术

ZigBee 是基于IEEE802.15.4标准的低功耗局域网协议。根据这个协议规定的技术是一种短距离、低功耗的无线通信技术。它介于RFID和蓝牙之间,可以通过传感器之间的相互协调通信进行设备的位置定位。这些传感器只需要很少的能量,以接力的方式通过无线电波将数据从一个传感器传到另一个传感器。

主要适合用于自动控制和远程控制领域,可以嵌入各种设备。其特点是近距离、低复杂度、自组织、低功耗、高数据速率。

RFID技术

RFID分为UHF和2.4G两种技术,UHF就是常说的工作在 900MHz的RFID技术,主要是有无源标签和阅读器组成。其最大的好处是在标签端是无源的,这就决定了其工作距离非常有限,一般只能到10米,采用 UHF技术,实现的定位,只能解决是否进入某个区域的简单判断,然后再根据标签反馈回的信号强度,可以知道标签和阅读器之间的距离。

采用其他的2.4G 的定位技术公司有很多,这里主要提一下瑞典的 Qubulus,电子标签对每个设备进行定位追踪,这些标签使用有源 RFID  技术,工作频率在2.4GHZ。

RFID定位技术利用射频方式进行非接触式双向通信交换数据,实现移动设备识别和定位的目的。它可以在几毫秒内得到厘米级定位精度的信息,且传输范围大、成本较低;不过,由于RFID不便于整合到移动设备之中、作用距离短(一般最长为几十米)、用户的安全隐私保护、国际标准化以下问题未能解决,以RFID定位技术的适用范围受到局限。

红外线技术

红外线技术室内定位是通过安装在室内的光学传感器,接收各移动设备(红外线IR标识)发射调制的红外射线进行定位,具有相对较高的室内定位精度。

但是,由于光线不能穿过障碍物,使得红外射线仅能视距传播,容易受其他灯光干扰,并且红外线的传输距离较短,使其室内定位的效果很差。当移动设备放置在口袋里或者被墙壁遮挡时,就不能正常工作,需要在每个房间、走廊安装接收天线,导致总体造价较高。

超声波技术

超声波定位主要采用反射式测距(发射超声波并接收由被测物产生的回波后,根据回波与发射波的时间差计算出两者之间的距离),并通过三角定位等算法确定物体的位置。

超声波定位整体定位精度较高、系统结构简单,但容易受多径效应和非视距传播的影响,降低定位精度;同时,它还需要大量的底层硬件设施投资,总体成本较高。

RFID分为UHF和2.4G两种技术,UHF就是常说的工作在 900MHz的RFID技术,主要是有无源标签和阅读器组成。其最大的好处是在标签端是无源的,这就决定了其工作距离非常有限,一般只能到10米,采用 UHF技术,实现的定位,只能解决是否进入某个区域的简单判断,然后再根据标签反馈回的信号强度,可以知道标签和阅读器之间的距离。

采用其他的2.4G 的定位技术公司有很多,这里主要提一下瑞典的 Qubulus,电子标签对每个设备进行定位追踪,这些标签使用有源 RFID  技术,工作频率在2.4GHZ。

RFID定位技术利用射频方式进行非接触式双向通信交换数据,实现移动设备识别和定位的目的。它可以在几毫秒内得到厘米级定位精度的信息,且传输范围大、成本较低;不过,由于RFID不便于整合到移动设备之中、作用距离短(一般最长为几十米)、用户的安全隐私保护、国际标准化以下问题未能解决,以RFID定位技术的适用范围受到局限。


产品中心

高精度定位设备

基础定位系统

增值应用系统

API/开放平台

位置大数据平台

消费级产品

解决方案

工业智能

安全生产

仓储物流

公检法司

智慧城市

新经济应用

典型案例

工业智能

司法智能

智慧城市

位置物联集团

清研讯科

蓝色创源

树云物联

姓名
电话
公司名称
需求行业
产业需求
  北京 | 广州 | 南京 | 成都
清研讯科
微信咨询